Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type–specific transcriptomic divergence of theDrosophilagermline has posed a significant technical barrier for comparative single-cell RNA-sequencing studies. By quantifying a surprisingly strong correlation between species- and cell type–specific divergence in three closely relatedDrosophilaspecies, we apply a statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25 to 30 My of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time. After validating these cross-species cell type classifications using RNA fluorescence in situ hybridization and imaging, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first show altering transcriptional burst size contributes to premeiotic transcription and altering bursting frequency contributes to postmeiotic expression. We then report global differences in autosomal vs. X chromosomal transcription may arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of neighboring genes’ transcriptional bursting properties during key stages of spermatogenesis.more » « less
-
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis onDrosophila melanogastertissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved geneHP6/Umbreaas an example of the ECD process. By assaying genome-wide chromosomal conformations in multipleDrosophilaspecies, we show thatHP6/Umbreawas inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential geneMFS18, that likely neofunctionalizedHP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation ofHP6/Umbrea’s future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno’s dilemma.more » « lessFree, publicly-accessible full text available December 20, 2025
-
Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states.more » « less
-
Abstract The composition of the lower continental crust, as well as its formation, growth, and evolution, remains a fundamental subject to be understood. In this study, we carry out a comparative and integrative analysis of seismic tomographic models, teleseismic receiver function results, and Airy isostasy in order to investigate the properties of the lower continental crust in eastern North America. We extract the depths for Vs of 4.0 km/s, 4.2 km/s, and 4.5 km/s from three selected tomographic models and calculate the differences between the Vs depth contours and the Moho depth defined by receiver functions. We then calculate the Airy isostatic Moho depth and its misfit with the receiver‐function‐defined Moho. Our analysis reveals three key features: (a) the deepening of the Vs depth contours and the strong negative Airy misfit within the U.S. Grenville Province; (b) a seismically faster‐than‐average and compositionally denser‐than‐average lowermost crust in the eastern North American Craton and the Grenville Province; and (c) the thickest, seismically fastest, and densest lowermost crust beneath the southern Grenville Front, the southern Grenville‐Appalachian boundary, and the U.S.‐Canada national border. We suggest that the lower crust of the craton and the Grenville Province has densified through garnet‐forming metamorphic reactions during and after orogenesis, contributing to the widely distributed fast‐velocity layer. The lower crust beneath the tectonic boundaries could have experienced more extensive garnet growth during orogenesis and emplacement of mafic magma. This study provides new constraints on the seismic and compositional properties of the lower crust in eastern North America.more » « less
-
Abstract The eastern North American passive margin was modified by Mesozoic rifting. Seismic data from recent deployment of onshore and offshore stations offer a unique opportunity for studying the signature of syn‐rifting and postrifting in lithospheric structures. Using full‐wave ambient noise tomography, we construct a new seismic velocity model for the lithosphere of the southeastern United States. Our model confirms an oceanic‐continental transitional crust over a ∼70 km wide zone across the coastline. Our model reveals (a) a patch of lower‐than‐average mantle lithospheric velocities underlying this transitional crust and (b) a low‐velocity column in the mantle lithosphere beneath the Virginia volcanoes. We propose that anomaly 1 represents cooled enriched mantle that underplated the thinning crust during the initial stages of rifting around 230 Ma. Anomaly 2 likely has a more recent origin in the Eocene and may result from an asthenospheric upwelling induced by a localized lithospheric delamination.more » « less
-
Abstract Lithospheric layering contains critical information about continental formation and evolution. However, discrepancies on the depth distributions of lithospheric layers have significantly limited our understanding of possible tectonic connections among the layers. Here, we construct a high‐resolution shear velocity model of eastern North America using full‐wave ambient noise simulation and inversion by integrating onshore and offshore seismic datasets. Our new model reveals large lateral variations of lithosphere thickness approximately across the major tectonic boundaries, strong low‐velocity anomalies underlying the thinner lithosphere, and multiple low‐velocity layers within the continental lithosphere. We suggest that the present mantle lithosphere beneath eastern North America was formed and modified through multiple stages of tectonic processes, among which metasomatism may have significantly contributed to the observed intralithospheric low‐velocity layers. The sharp thickness variation of lithosphere promoted edge‐driven mantle convection, which has been consequently modifying the overlying mantle lithosphere and further sharpening the gradient of lithosphere thicknessmore » « less
-
Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not currently limited to pure metals and conventional metallic alloys, and a wide range of materials are processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanism of geological and astronomical phenomena and the origin of life. Keywords: Severe plastic deformation (SPD); Nanostructured materials; Ultrafine grained (UFG) materials; Gradient-structured materials, High-pressure torsion (HPT)more » « less
An official website of the United States government
